Menü Kapat

Original Article

A generative adversarial network based super-resolution approach for capsule endoscopy images

Mehmet Turan

   

Abstract
Medical wireless capsule endoscopy is an effective method for diagnosis and evaluation of gastrointestinal diseases. However, due to energy and size limitations, it produces low-resolution images, which makes it difficult to detect and diagnose the abnormality and may even lead to an incorrect diagnosis. Recently, endoscopy methods with improved resolution have been shown to be more effective than conventional endoscopy approaches in disease detection and characterization, and it is expected that they will have the same success in the field of capsule endoscopy. In this study, a novel method based on deep learning techniques is proposed that can generate high-resolution counterparts of low-resolution endoscopic images. Conditional GANs and spatial attention blocks are combined to increase the resolution by 8x, 10x and 12x. Extensive qualitative and quantitative analyses show that the proposed method is more successful than the recent deep super-resolution technologies, such as Deep Back Projection Network (DBPN) and Residual Channel Attention Networks (RCAN).

Key words: Capsule endoscopy, deep super resolution, spatial attention blocks, generative adversarial networks

Med-Science. 2021; 10(3): 1002-7

 
 
 
 
 
 
Medicine Science Vol:10 Issue:3 Year:2021 PP:670–1086
Posted in Vol: 10 Issue: 3 Year: 2021 September pp: 670–1086

Related Posts

%d blogcu bunu beğendi: